Attachnment 2 Crack

"Crack Version 4.1"
A Sensi bl e Password Checker for Unix

Alec D.E. Muffett

Uni x Sof t war e Engi neer
Aberystwth, Wales, UK
(aem@ber. ac. uk or alec_muffett@licomlut.ac. uk)

ABSTRACT

Crack is a freely avail able program designed
to find st andard Uni x ei ght-character DES
encrypted passwords by standard guessing tech-
ni ques outlined below. It is witten to be flexi-
bl e, configurable and fast, and to be able to nake
use of several networked hosts via the Berkel ey
rsh program (or simlar), where possible.

1. Statenent of Intent

Thi s package is nmeant as a proving device to aid the con-
struction of secure conputer systens. Users of Crack are
advi sed that they nay get severly hassled by authoritarian
type sysadmin dudes if they run Crack w thout proper author-
i sation.

2. Introduction to Version 4.0

Crack is nowinto it's fourth version, and has been reworked
extensively to provide extra functionality, and the purpose
of this release is to consolidate as nmuch of this new func-
tionality into as small a package as possible. To this end,
Crack nmay appear to be less configurable: it has been wit-
ten on the assunption that you run a fairly nodern Uni x, one
with BSD functionality, and then patched in order to run on
ot her systens.

Thi s, surprisingly enough, has led to neater code, and has
made possible the introduction of greater flexibility which
supercedes many of the options that could be configured in
earlier versions of Crack. |In the same vein, some of the
ol der options are now nmandatory. These, such as feedback
nmode and CRACK PRI NTQUT are no | onger supported as options
and probably never will be again. There is just a lot of
wastage in not running with them and too nmany dependencies
in other functions to bother progranm ng around them

March 3, 1992

The user interface is basically identical to the previous
versions, although sone people have asked about providing
X-wi ndows GU's to Crack, | think it would be a waste of
time to do so. Crack has far |ess options than your ordinary
version of /bin/ls.

3. Introduction to Version 4.1

Version 4.1 of the Crack programis an attenpt to extend the
features introduced in v4.0 and provi de hooks for external
libraries such as Mchael dad's wonderful UFC crypt()
i mpl enent ati on, which (on sone platforns) can outperform ny
fcrypt() by a factor of 3. | have al so been burdened wth
the task of making Crack's nenory handl i ng bombproof (hah!)
in the vague hope that it will survive running out of nmenory
on smal |l machi nes. [1]

The extensions that | mention above regard the addition of
extra primtives to the dictionary processing | anguage which
permit the production of nore concise dictionaries contain-
ing words, nore of which are likely to be passwords. The
idea is to gain efficiency by removing sone of the dross
fromthe generated dictionaries.

Crack should (generally) be nmore disk-space efficient now
that the program can spot dictionaries which have been
conpressed using conpress or pack and will unconpress them
on the fly as necessary (using zcat or pcat respec-
tively).[2]

4. Crack Methodology - Part 1: Internals

Crack takes as its input a series of passwrd files and

source dictionaries. It nerges the dictionaries, turns the
password files into a sorted list, and generates lists of
possi bl e passwords fromthe merged dictionary or frominfor-
mat i on gl eaned about users fromthe password file. It does
[1] - or even on large ones. Brian Tonpsett at Hul
tweaked Crack v3.3 wuntil it could run to conpletion
after filling the swapspace on each of a network of

SparcStation2's. Due to restructuring work on v4.0,
have had to wite ny own sorting algorithm & re-
i mpl enent all of his tweaks from scratch, and can only
hope that | have enulated the bonbproofness of this
desirable (?) functionality.

[2] Note to people who are short on nenory or swap:
do remenber that to do this Crack will have to fork()
(via popen()) and mght not be able to create the un-
conpressing process. Hence, if you intend to swapl ock
your machine, don't conpress the dictionaries. Switch
this off by editing the Crack shellscript.

March 3, 1992

not attenpt to remedy the problemof allowi ng users to have
guessabl e passwords, and it should NOT be used in place of

- 3 -
getting a really good, secure passwd program repl acenent. [3]

The above paragraphs define the purpose of Crack, and enbody
a great deal of hard work, screans of Eureka!, drunkeness,
and a fair anount of swearing too. There is a |lot of think-
i ng, philosophy, and enpirical guesswork behind the way that
Crack attacks password files, and although it is not per-
fect, | certainly hope that Crack will out-do nbst of It's
competitors.

Crack wor ks by maki ng many individual passes over the pass-
word entries that you supply to it. Each pass generates
password guesses based upon a sequence of rules, supplied to
the program by the wuser. The rules are specifiedin a

sinmplistic | anguage in t he files gecos.rul es and
dicts.rules, to be found in the Scripts directory. The dis-
tinction between these two files will be nmade clear later

The rules are witten as a sinple string of characters, with
one rule to aline. Blank lines, and coment |ines begin-
ning with a hash character # are ignored. Trailing whi-
tespace is also ignored. The instructions in the rule are
followed fromleft to right, and are applied to the diction-
ary words one by one, as the words are | oaded. Sone sinmple
pattern matching prinmitives are provided for selection pur-
poses, so that if the dictionary word does not nmatch the
pattern, it is ignored. This saves on tine and nenory.
Before <carrying on, | suggest that you browse through
Scripts/dicts.rules, take a ook at the rules supplied as
defaults, and try to work out what they do

The rules are stored in tw different files for two dif-
ferent purposes. Rules in Scripts/gecos.rules are applied
to data generated by Crack fromthe pw gecos and pw _gecos
entries of the user's password entry. The data fed to the
gecos rules for the user aem who is Alec David Mffett,
Systens would be: aem Alec, David, Muffett, Systems, and a
series of pernutations of those words, either re-ordering
the words and joining themtogether (eg: Al ecMuffett), or
maki ng up new words based on initial letters of one word
taken with the rest of another (eg: AMuffett).[4]

The entire set of rules in gecos.rules is applied to each of

[3] See the end of ths docunent for nore information
about passwd repl acenents.

[4] - and ASystens and DSystens, and MSystens, etc..
because Crack does not differentiate. Hence, care
shoul d be taken to check for redundancy when addi hg new
rules, so as not to waste tinme during the gecos pass.

March 3, 1992

these words, which creates many nore pernutations and conbi -

nations, all of which are tested. Hence testing the pass-
word gecos information under Crack v4.0 and upwards takes

- 4 -

somewhat |l onger than previously, but it 1is far nore
t hor ough.

After a pass has been made over the data based on gecos
information, Crack nakes further passes over the password
data using successive rules fromthe Scripts/dicts.rules by
|l oading the whole of Dicts/bigdict file into nenory, with
the rule being applied to each word from that file. Thi s
generates a resident dictionary, which is sorted and uni qued
so as to prevent wasting tinme on repetition. After each pass
is conpleted, the nenory used by the resident dictionary is
freed up, and (hopefully) re-used when the next dictionary
i s | oaded.

The Dicts/bigdict dictionary is created by Crack by nerging,
sorting, and uniq ing the source dictionaries, which are to
be found in the directory DictSrc and which nmay also be
named in the Crack shellscript, via the $STDDI CT vari abl e.
(The default value of $STDDICT is /usr/dict/words).

The file DictSrc/bad pws.dat is a dictionary which is neant
to provide nmany of those conmmon but non-dictionary pass-
words, such as 12345678 or qgwerty.

If you wish to provide a dictionary of your own, just copy
it into the DictSrc directory (use conpress on it if you
wi sh to save space; Crack will unpack it whilst generating
the big dictionary) and then delete the contents of the
Dicts directory by running Scripts/spotless. Your new dic-
tionary will be merged in on the next run. For nore informa-
tion on dictionary attacks, see the excellent paper called
"Foiling the Cracker: A Survey of, and |nprovenents to,
Password Security" by Dani el Kl ei n, avai |l abl e from
ftp.sei.cnu.edu in ~/pub/dvk/passwd. *. Al so, please read
the APPENDI X file supplied with this distribution.[5]

Havi ng descri bed the nethod of cracking, perhaps we should
now investigate the algorithmused to overlay the cracking
mechani sm

[5] Extra dictionaries (those detailed in Dan Klein's
paper) can be obtained via anonynous FTP from
ftp.uu.net (137.39.1.9) as ~/pub/dictionaries.tar.Z;, or
check an Archie database for other possible sources of
di ctionaries.

March 3, 1992

5. Crack Methodol ogy - Part 2: Feedback Filters

As is stated above, Crack pernmutes and |oads dictionaries
directly into nenory, sorts and uniques them before

- 5 -

attenpting to use each of the words as a guess for each
users' password. |If Crack correctly guesses a password, it
mar ks the user as done and does not waste further time on
trying to break that users password.

Once Crack has finished a dictionary pass, it sweeps the
list of wusers looking for the passwords it has cracked. It
stores the cracked passwords in both plaintext and encrypted
forns in a feedback file in the directory Runtime. Feedback
files have names of the form Runti e/ F*.

The purpose of this is so that, when Crack is next invoked,
it my recogni se passwords that it has successfully cracked
before, and filter them from the input to the password
cracker. This provides an instant |list of crackable users
who have not changed their passwords since the last tine
Crack was run. This list appears in a file with nane out* in
the $CRACK _QUT directory, or on stdout, if foreground node
is invoked (see Options, below).

In a simlar vein, when a Crack run termnates normally, it
wites out to the feedback file all encrypted passwords that
it has NOT succeeded in cracking. Crack wll then ignore

all of these passwords next time you run it.

Qoviously, this is not desirable if you frequently change
your dictionaries or rules, and so there is a script pro-
vided, Scripts/nrgfbk which sorts your feedback files,
merges them into one, and optionally renoves all traces of
"uncrackabl e' passwords, so that your next Crack run can
have a go at passwords it has not succeeded in breaking
bef ore.

Mgfbk is invoked automatically if you run Scripts/spotless.
6. Crack Methodol ogy - Part 3: Execution and Networking

Each time Crack is invoked, whether networked or not, it
generates a diefile with a name of the form Runtinme/D* (for
network cracks, this file is generated by RCrack, and is of
the form Runtime/DR* which points to a real diefile, named
Runtine/ RD* - see below for details).

These diefiles contain debugging i nformati on about the job,
and are generated so that all the jobs on the entire network
can be called quickly by invoking Scripts/plaster. Diefiles
del ete thensel ves after they have been run

As you will read in the sections below, Crack has a -network
option: Thi s is designed to be a sinmple nethod of

March 3, 1992

autonatically spreading the |oad of password cracking out
over several nachines on a network, preferably if they are
connected by sone form of networked filestore.

When Crack -network is invoked, it filters its input in the

- 6 -

ordinary way, and then splits its |load up anbngst several
machi nes whi ch are speci fied in the file
Scri pt s/ net wor k. conf .

This file contains a series of hostnames, power ratings,
flags, etc, relevant to the running of Crack on each
machi ne. Crack then calls Scripts/RCrack to wuse the rsh
command (or simlar) to invoke Crack on the other hosts.
See the RCrack script, and the exanple network.conf file for
details.

7. Installation

Crack is one of those npbst unusual of beasties, a self-
installing program Sone peopl e have conpl ai ned about this
apparent weirdness, but it has grown up wth Crack ever
since the wearliest network version, when | could not be
bothered to log into several different nachines with several
di fferent architectures, just in order to build the
bi nari es. Once the necessary configuration options have been
set, the executables are created via make by running the
Crack shell script

Crack's configuration lies in tw files, the Crack shell
script, which contains all the installation specific confi-
guration data, and the file Sources/conf.h, which contains
configuration options specific to various binary platforms.

In the Crack shellscript, you wll have to edit the
CRACK HOVE variable to the correct value. This variable
shoul d be set to an absolute path name (nanes relative to
~usernane are OK, so long as you have some sort of csh)
through which the directory containing Crack nmay be accessed
on ALL the machines that Crack will be run on. There is a
simlar variable CRACK QUT which specifies where Crack
should put its output files - by default, this is the sane
as $CRACK_HOMVE

You will also have to edit the file Sources/conf.h and work
out which switches to enable. Each #define has a snmall note
explaining its purpose. Were | have been in doubt about
the portability of certain library functions, usually |I have
re-witten it, so you should be K. Let nme know of your
problens, if you have any.

If you will be using Crack -network you will then have to
generate a Scripts/network.conf file. This contains a list
of hostnanes to rsh to, what their binary type 1is (usefu

when runni ng a net wor k Crack on several different

March 3, 1992

architectures), a guesstimate of their relative power (take
your sl owest nachine as unary, and neasure all others rel a-
tive toit), and a list of per-host flags to add to those
specified on the Crack conmand |ine, when calling that host.
There is an exanple of such a file provided in the Scripts
directory - take a look at it.

-7 -

If ever you wish to specify a nore precise figure as to the
relative power of your nachines, or you are sinply at a
|l oss, play with the command make tests in the source code
directory. This can provide you wth the nunber of
fcrypt()s that your nachine can do per second, which is a
nunber that you can plug into your network.conf as a neasure
of your machines' power (after rounding the value to an
i nteger).

8. Usage

kay, so, let's assune that you have edited your Crack
script, and vyour Sources/conf.h file, where do you go from
here ?

Crack [options] [bindir] /etc/passwd [...other passwd fil es]

Crack -network [options] /etc/passwd [...other passwd fil es]

Where bindir is the optional nane of the directory where you
want the binaries installed. This is useful where you want
to be able to run versions of Crack on several different
architectures. If bindir does not exist, a warning will be
i ssued, and the directory created.

Note: bindir defaults to the nane generic if not
supplied

Notes for Yellow Pages (N'S) Users: | have occasional
queries about how to get Crack running froma YP password
file. There are several nethods, but by far the sinplest is
to generate a passwd format file by running:-

ypcat passwd > passwd.yp
and then running Crack on this file.
9. Options

-f Runs Crack in foreground node, ie: the password cracker
is not backgrounded, and nessages appear on stdout and
stderr as you would expect. This option is only really
useful for very snmall password files, or when you want
to put a wapper script around Crack

March 3, 1992

Foreground node is disabled if you try running Crack
-network -f on the command |ine, because of the insen-
sibility of rshing to several machines in turn, waiting
for each one to finish before calling the next. How
ever, please read the section about Network Cracking
wi t hout NFS/ RFS, bel ow.

-V Sets verbose nbde, whereby Crack will print every guess

- 8 -

it istrying on a per-user basis. This is a very quick
way of flooding your filestore, but useful if you think
somet hing i s goi ng wong.

-m Sends mail to any user whose password you crack by
i nvoking Scripts/nastygram with their usernane as an
argunent. The reason for using the script is so that a
degree of flexibility in the format of the mail nessage
is supplied; ie: you don't have to reconmpile code in
order to change the nessage. [6]

-nval ue
Sets the process to be nice()ed to value, so, for exam
ple, the switch -nl9 sets the Crack process to run at
the I owest priority.

- het wor k

Throws Crack into network node, in which it reads the
Scripts/network.conf file, splits its input into chunks
whi ch are sized according to the power of the target
machine, and calls rsh to run Crack on that nachine.
Options for Crack running on the target machine may be
supplied on the comrand line (eg: verbose or recover
node), or in the network.conf file if they pertain to
specific hosts (eg: nice() values).

-r<pointfil e>
This is only for use when running in recover node.
When a running Crack starts pass 2, it periodically
saves its state in a pointfile, with a nane of the form
Runtime/P.* This file can be used to recover where you
were should a host crash. Sinply invoke Crack in
exactly the same manner as the last tine, with the
addition of the -r switch, (eg: -rRuntine/Pfredl2345)

[6] I"muncertain about the wi sdom of nmiling soneone
like this. |If someone browses your cracked user's nmai
somehow, it's like a great big neon sign pointing at
the wuser saying "This Is A Crackable Account - Go For

It!". Not to nention the false sense of security it
engenders in the System Manager that he's "inforned"
the user to change his password. VWat if the user
doesn't log on for 3 nonths? However, so many people
have wired it into their own versions of Crack, | sup-
pose it nust be provided... AEM

<1b>9

March 3, 1992

switch. Crack will startup and read the file, and junp
to roughly where it left off. |If you are cracking a
very |arge password file, this can save oodles of tine
after a crash.

If you were running a network Crack, then the jobs wll
agaln be spawned onto all the nmachines of the origina
Crack. The programwi |l then check that the host it is
running on is the same as is nmentioned in the

10.

-9 -

pointfile. If it is not, it will quietly die. Thus,
assum ng that you supply the sane input data and do not
change your network.conf file, Crack should pick up
where it left off. This is a bit inelegant, but it's
better than nothing at the nonent.

The nethod of error recovery outlined above causes
headaches for users who want to do multiprocessing on
parall el architectures. Crack is in no way parallel
and because of the way it's structured (reading stdin
fromshellscript frontends) it is a pain to divide the
wor k anobngst several processes via fork()ing

The hack solution to get several copies of Crack run-
ning on one machine with n processors at the nmonment is
to insert n copies of the entry for your parallel
machine into the Scripts/network.conf file. If you use
the -r option in these circunstances however, you will
get n copies of the recovered process running, only one
of themw ||l have the correct input data.

The old solution to this problem (see old docunentation
if you are interested) has been negated by the intro-
duction of feedback node, so the best bet in this par-
ticular situation is to wait until the other jobs are
done (and have witten out lists of uncrackable pass-
words), and then re-start the jobs fromscratch. Any-
one whose password was not cracked on the first run
will be ignored on the second, if they have not changed
it since. This is inelegant, but it's the best | can
do inthe limted tinme avail able.

Support Scripts

The Scripts directory contains a small nunber of support and
utility scripts, sone of which are designed to help Crack
users check their progress. Briefly, the nost wuseful ones

are: -

Scri pts/ shadnrg

This is a small (but hopefully readable) script for
nmerging /etc/passwd and /etc/shadow on SystemV style
shadow password systens. It produces the nerged data
to stdout, and will need redirecting into a file before
Crack can work on it. The script is meant to be fairly

March 3, 1992

lucid, on the grounds that | worry that there are many
shadowi ng schenes out there, and perhaps not all have
the sane data format.

| have not wired this facility into the Crack conmmand
itself because the world does NOT revol ve around System
V yet, regardl ess of what some people would have ne
believe, and | believe that the |ack of direct support
for NIS outlined above, sets a precedent. There are
just too nany inconpatibilities in shadow password

- 10 -
schenes for ne to hardw re anything.

Scri pt s/ pl aster
which is naned after a dunb joke, but is a sinple fron-
tend to the Runtinme/D* diefiles that each copy of the
password cracker generates. Invoking Scripts/plaster
will kill off all copies of the password cracker you
are running, over the network or otherw se.

Scri pts/status
This script rshes to each machine nentioned in the
Scripts/network.conf file, and provides sone inforna-
tion about processes and uptine on that nachine. Thi s
is useful when you want to find out just how well your
password crackers are getting on during a Crack -net-
wor k.

Scripts/{cl ean, spot| ess}

These are really just frontends to a nakefile. |nvoking
Scripts/clean tidies up the Crack hone directory, and
renoves probably unwanted files, but |eaves the pre-
processed dictionary bigdict intact. Scripts/spotless
does the same as Scripts/clean but obliterates bigdict
and old output files too, and conpresses the feedback
files into one.

Scri pt s/ nast ygr am
This is the shellscript that is invoked by the password
cracker to send mail to users who have guessabl e pass-
words, if the -moption is used. Edit it at your |lei-
sure to suit your system

Scri pt s/ guess2f bk
This script takes your out* files as argunents and
reformats the 'Quessed lines into a slightly nessy
feedback file, suitable for storing with the others.

An occasion where this mght be wuseful is when your
cracker has guessed many peopl es passwords, and then
died for sone reason (a crash?) before witing out the
guesses to a feedback file. Running

Scri pt s/ guess2f bk out* >> Runtinme/F. new

March 3, 1992

wil|l save the work that has been done.
11. Network Cracking wi thout NFS/ RFS

For those users who have some formof rsh conmand, but do
not have a a networked filestore running between hosts,
there is now a solution which will allow you to do networked
cracki ng, proposed to nme by Brian Tonpsett at Hull. Person-
ally, | consider the idea to be potty, but it fills in mss-
ing functionality in a wonderfully tacky nmanner

- 11 -

From t he docunentati on above, you will note that Crack will
undo the -f (output in foreground) option, if it is invoked
with the -network switch at the sane tine (see the Options
section above). This is true, but it does not apply If you
specify -f option in the network.conf file.

The practical upshot of doing this is that renote copies of
Crack can be nade to read fromstdin and wite to stdout
over a network link, and thus renpte processing is accom
pl i shed. I have tweaked Crack in such a way, therefore,
that if the -f option is specified amongst the crack-flags
of a host in the network.conf, rather than backgroundi ng
itself on the renpte host, the rsh command on the server is
backgrounded, and output is witten directly to the files on
the server's filestore.

There are restrictions upon this method, nostly involving
the nunber of processes that a user may run on the server at

any one tinme, and that you will have to collect feedback
output together nanually (dropping it into the Runtine
directory on the server). However, it works. Also, if you

try to use rsh as another user, you will suffer problens if
rsh insists on reading sonething fromyour termnal (eg: a
password for the renbte account). Also, recovering using
checkpoi nting goes out the window unless you specify the
nane of the pointfile as it is naned on the renote nachi ne.

12. UFC Support and notes on fast crypt() inplenentations

The stdlib version of the crypt() subroutine is incredibly
sl ow. It is a massive bottleneck to the execution of Crack
and on typical platforns that you get at universities, it is
rare to find a machine which will achieve nore than 50 stan-
dard crypt() s per second. On lowend diskless worksta-
tions, you may expect 2 or 3 per second. It was this slow
ness of the crypt() algorithmwhich originally supplied much
of the security Unix needed.[7]

[7] See: "Password Security, A Case History" by Bob
Morris & Ken Thonson, in the Unix Programer Docs.

March 3, 1992

There are now many inplenentations of faster versions of
crypt() to be found on the network. The one supplied with

Crack v3.2 and upwards is called fcrypt(). It was origi-
nally witten in May 1986 by Robert Baldwin at MT, and is a
good version of the crypt() subroutine. | received a copy

fromlcarus Sparry at Bath University, who had nade a couple
of portability enhancenments to the code

I rewote nost of the tables and the KeySchedul e generating
algorithm in the original fdes-init.c to knock 40% of f the
execution overhead of fcrypt() in the form that it was
shi pped to ne. | inlined a bunch of stuff, put it into a

- 12 -

single file, got some advice from Matt Bishop and Bob
Baldwin [both of whom!| amgreatly indebted to] about what
to do to the xform() routine and to the fcrypt function

itself, and tidied up sone algorithns. | have al so added
more | ookup tables and reduced several formula for faster
use. Fcrypt() is now barely recogni sabl e as bei ng based on

its forner incarnation, and it is 3x faster.

On a DecStation 5000/200, fcrypt() is about 16 tines faster
than the standard crypt (your nileage nmay vary with other
architectures and conpilers). This speed puts fcrypt() into
the "noderately fast" | eague of crypt inplenmentations.

Anongst ot her crypt inplenentations available is UFC by
M chael d ad. UFC-crypt is a version of the crypt subrou-
tine which is optimsed for machines with 32-bit |ong
integers and generally outperforms ny fcrypt() by a factor
of between 1 and 3, for a tradeoff of |large nenory usage,
and nenory-cache unfriendliness. Hooks for even nore optim
i sed assenbl er versions of crypt() are also provided for
some platforms (Sun, HP, ...). Getting UFC to work on 16
bit architectures is nearly inpossible.

However, on nost architectures, UFC generates a stunning
increase in the power of Crack, and so, fromv4.1l onwards,
Crack is witten to automatically nmake use of UFCif it can
find it. Al that you have to do is to obtain a suitable
copy of UFC (preferably a version which nentions that it is
compatible with Crack v4.1, and unpack it into a directory
called ufc-crypt in $CRACK HOVE, and then delete your old
bi nari es. UFC will then be detected, conpiled, tested and
used in preference to fcrypt() by the Crack program wher-
ever possible.

13. Concl usi ons

What can be done about brute force attacks on your password
file ?

You nust get a drop-in replacenent for the passwd and
yppasswd conmands; one which will stop people from choosing
bad passwords in the first place. There are severa

March 3, 1992

prograns to do this; Matt Bishop's passwd+ and dyde
Hoover's npasswd program are good exanples which are freely
avai | abl e. Consult an Archie database for nore details on
where you can get them from

It would be nice if an organisation (such as CERT?) could be
persuaded to supply skeletons of sensible passwd commands

for the public good, as well as an archive of security
related utilities[8] on top of the excellent COPS. However,
for Unix security to inprove on a global scale, we will also

require pressure on the vendors, so that prograns are wit-
ten correctly fromthe beginning.

[8] COPS is available for anonynous FTP from
cert.sei.cnu.edu (128.237.253.5) in ~/cops

March 3, 1992

